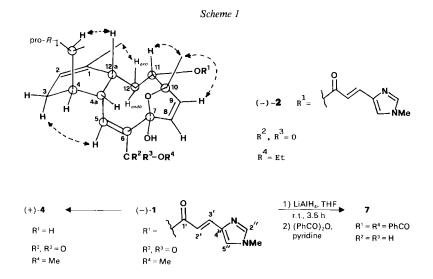
189. Sarcodictyin A and Sarcodictyin B, Novel Diterpenoidic Alcohols Esterified by (E)-N(1)-Methylurocanic Acid. Isolation from the Mediterranean Stolonifer Sarcodictyon roseum


by Michele D'Ambrosio, Antonio Guerriero, and Francesco Pietra*

Istituto di Chimica, Università di Trento, I-38050 Povo-Trento

(11.VIII.87)

The Mediterranean stolonifer Sarcodictyon roseum (= Rolandia rosea) (Cnidaria, Anthozoa, Alcyonaria, Stolonifera, Clavulariidae) is shown to contain two novel diterpenoidic alcohols esterified by (E)-N(1)-methyl-urocanic acid (= (E)-3-(1-methyl-1H-imidazol-4-yl)acrylic acid). They are sarcodictyin A (= (-)-(4R,4aR, 7R,105,115,12aR,1Z,5E,8Z)-7,10-epoxy-3,4,4a,7,10,11,12,12a-octahydro-7-hydroxy-6-(methoxycarbonyl)-1,10-dimethyl-4-(1-methylethyl)benzocyclodecen-11-yl (E)-3-(1-methyl-1H-imidazol-4-yl)acrylate; (-)-1) and sarcodictyin B (the 6-(ethoxycarbonyl analogue; (-)-2). The assignment of the structures is mainly based on 1D- and 2D-NMR data, as well as on chemical transformations of (-)-1, such as transesterification with MeONa/MeOH giving methyl (E)-N(1)-methylurocanate (3) and the free alcohol (+)-4 and reduction with LiA1H₄ followed by benzoylation giving dibenzoate 7. Absolute configurations are based on *Horeau*'s method of esterification of (+)-4.

1. Introduction. – Cnidaria, chiefly tropical alcyonarians of the orders Alcyonacea, Gorgonacea, and Pennatulacea contain a wide variety of terpenoids [1]. Recently, we have added to the list new interesting sesqui- and diterpenoids isolated from Mediterranean species, the alcyonacean coral *Alcyonium coralloides* [2] and the sea pen *Veretillum cynomorium* [3]. We have also observed that there is a dietary transfer of diterpenoids from this sea pen to its predator, the nudibranch *Armina maculata* [3].

We have now focussed our attention to Stolonifera, a less common order of alcyonarians, in isolating from the Mediterranean species *Sarcodictyon roseum* a unique meroterpenoid which is optical active due to partial hydrogenation of its quinone moiety [4]. Continuing the study of this animal, we have now isolated novel complex diterpenoidic alcohols esterified by (E)-N(1)-methylurocanic acid (= (E)-3-(1-methyl-1H-imidazol-4yl)acrylic acid). These are sarcodictyin A and B, and we demonstrate in this work that they have the structures (-)-1 and (-)-2, respectively (*Scheme 1*). This is interesting as complex terpenoids have never been isolated before from stolonifers which, from the study of tropical species, are known to contain acetogenins, particularly eicosanoids [5].

2. Results and Discussion. – The compound now isolated from *S. roseum*, sarcodictyin A((-)-1), has the highest mass peak at m/z 496. High-resolution MS reveals the composition $C_{28}H_{36}N_2O_6$, whilst linked scans [6] show the loss of H_2O , a Me group, and an i-Pr group. That this highest mass peak is the molecular ion is indicated by ¹³C-NMR spectra which show 28 signals with the multiplicities, revealed by APT experiments [7], reported in *Table 1*. The structure (-)-1 for sarcodictyin A is also based on its ¹H-NMR data (see *Table 2*).

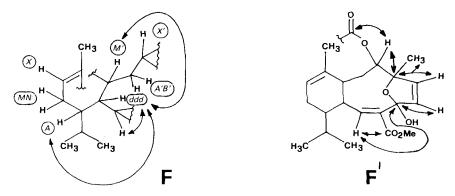
C-Atom	$\delta_{ m C}$	Correlated protons ^a)
C(1)	134.33 (s)	Me-C(1), H_{α} -C(3), H-C(12a)
C(2)	121.78(d)	Me-C(1), H_{α} -C(3)
C(3)	24.58(t)	
C(4)	42.09(d)	Me(pro-S)
C(4a)	34.92 (<i>d</i>)	H_{α} -C(3)
C(5)	143.91 (<i>d</i>)	H-C(12a), H-C(4a)
C(6)	135.54(s)	H-C(9), H-C(5), H-C(4a)
C(7)	112.28(s)	H-C(9), H-C(8), H-C(5)
C(8)	134.66 (<i>d</i>)	H-C(9), H-C(5)
C(9)	132.97(d)	H-C(11), H-C(8), Me-C(10)
C(10)	89.64 (s)	H_{exo} -C(12), Me-C(10), H-C(11), H-C(9), H-C(8)
C(11)	81.77 (<i>d</i>)	H_{exo} -C(12), Me-C(10), H-C(12a)
C(12)	32.24(t)	
C(12a)	39.22 (<i>d</i>)	H-C(2)
Me ₂ CH	29.04(d)	Me(pro-R)
Me(pro-S)	20.38(q)	
Me(pro-R)	22.23(q)	
Me-C(1)	22.14(q)	
Me-C(10)	25.88(q)	
C-C(6)	167.95 (s)	H-C(5), MeO
MeO	51.75 (q)	
C(1')	167.18 (s)	H-C(2'), H-C(3'), H-C(11)
C(2')	115.31 (<i>d</i>)	H-C(3')
C(3')	138.04 (<i>d</i>)	
C(2")	140.36 (<i>d</i>)	MeN, $H-C(5'')$
C(4")	138.32 (s)	H-C(2"), H-C(5"), H-C(2')
C(5")	124.50 (<i>d</i>)	H-C(3'), H-C(2''), MeN
MeN	33.26 (q)	H-C(5")

Table 1. ¹³C-NMR Data ($\delta_{\rm C}$) and Long-Range C,H Correlations for Sarcodictyin A ((-)-1) in C_5D_5N

Table 2. ¹H-NMR Data^a) for Sarcodictyin A ((-)-1) in C_5D_5N

H-Atom	(-)-1
H-C(2)	5.26 (br. s, $J(2,3\beta) \approx 4$, $J(2,3\alpha) \approx J(2,12a) \approx 2.5$, $J(2, Me-C(1)) \approx 1$)
$H_{\alpha}-C(3)$	2.38 (br. d , $J_{gem} = 18.0$, $J(3\alpha, 4) = 6, 1$, $J(3\alpha, 2) \approx 2.5$, $J(3\alpha, Me - C(1))$ small)
$H_{\beta}-C(3)$	1.94 (br. $d, J_{\text{gem}} = 18.0, J(3\beta, 2) \approx 4, J(3\beta, \text{MeC}(1))$ small)
H–C(4)	1.17 (m , $J(4, Me_2CH) = 10.0$, $J(4, 4a) = 2.8$, $J(4, 3a) = 6.1$)
H-C(4a)	4.58 (ddd, J(4a,5) = 9.5, J(4a,12a) = 4.6, J(4a,4) = 2.8)
HC(5)	6.97 (d, J(5,4a) = 9.5)
HC(8)	7.12 (d, J(8,9) = 5.6)
H-C(9)	6.28 (d, J(9,8) = 5.6)
H-C(11)	5.18 (br. d , $J(11, 12endo) = 7.0$, $J(11, 12exo)$ small)
$H_{exo}-C(12)$	1.98 (br. d , $J_{gem} = 15.0$, $J(12exo, 12a) = 1.8$, $J(12exo, 11)$ small)
$H_{endo}-C(12)$	$1.76 (ddd, J_{gem} = 15.0, J(12endo, 12a) = 12.2, J(12endo, 11) = 7.0)$
H-C(12a)	2.95 (br. d , $J(12a, 12endo) = 12.2$, $J(12a, 4a) = 4.6$, $J(12a, 12exo) = 1.8$, $J(12a, 2) \approx 2.5$,
	J(12a, Me-C(1)) small)
Me_2CH	1.43 $(m, J(Me_2CH, 4) = 10.0, J(Me_2CH, Me(pro-S)) = J(Me_2CH, Me(pro-R) = 6.6)$
Me(pro-S)	$0.91 (d, J(Me(pro-S), Me_2CH) = 6.6)$
Me(pro-R)	$0.81 (d, J(Me(pro-R), Me_2CH) = 6.6)$
Me-C(1)	1.58 (br. s, $J(Me-C(1),2) \approx 1$, $J(Me-C(1),12a) \approx J(Me-C(1),3\beta) \approx J(Me-C(1),3\alpha)$ small)
Me-C(10)	1.53 (s)
MeO	3.65(s)
H-C(2')	7.14 (d, J(2', 3') = 15.5)
H-C(3')	8.05 (d, J(3', 2') = 15.5)
H-C(2")	7.68 (br. $s, J(2'', 5'')$ small)
H-C(5")	7.35 (br. s, J(5",2") small)
<u>Me-N(1")</u>	3.40 (s)

^a) The pattern reported after the chemical-shift value is for the signal as it appears from the non-decoupled spectrum; most of the coupling constants are derived from double irradiations and are confirmed by COSY experiments. By small, we indicate coupling constants smaller than 0.5 Hz. Approximate values of coupling constants result from difficult evaluations due to the complexity of the spectrum.


Starting from the low-field side, the ¹³C-NMR spectrum of (-)-1 can be described as follows. At 167-168 ppm there are 2 s for 2 ester carbonyl groups, in accordance with IR data. Although the region 150–110 ppm shows 4 s and 8 d, there can only be 5 C=C groups. It will become apparent later that one of the s must belong to a tetrahedral C-atom bearing 2 O-atoms [2b] and that one of the d must belong to a sp² C-atom bound to a N-atom. The region 90–80 ppm, which is typical of tetrahedral C-atoms substituted by 1 O-atom, shows a d and a s. At 51.75 ppm, there is a q for the MeO group of an ester. At 33.26 ppm, there is a q suitable for a Me group at a N-atom. Finally, at high field, there are 4 d, 2 t, and 4 q attributable to 4 CH, 2 CH₂, and 4 CH₃ groups, respectively.

The ¹³C-NMR analysis has thus revealed 35 H-atoms, whereas the MS show 1 H-atom more. This H-atom must be on an O-atom as suggested by the MS observation of the loss of H_2O from the molecular ion. Therefore, accounting for the presence of 2 C=O, 5 C=C, and 1 C=N group, sarcodictyin A must be tretracyclic.

Of the six O-atoms detected by MS, 4 are involved in the 2 ester moieties and 1 in the OH group. The remaining O-atom, in the absence of other indications, has to be part of an ether group, though a simple, linear ether is ruled out by the absence of two isolated C-chain fragments. Therefore, there must be an O-containing heterocycle.

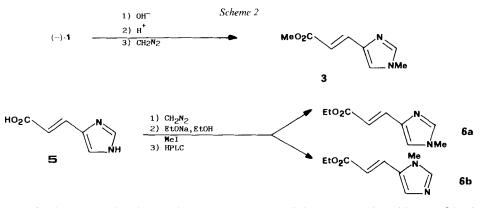
The ¹H-NMR spectrum (*Table 2*) reveals 2 s for 2 Me groups at heteroatoms, besides 2 d and 1 m for an i-Pr group, 2 s for 2 deshielded Me groups, and a br. s and a d at 5.26 and 6.97 ppm, respectively, for 2 mutually not coupled olefinic protons. Extensive homonuclear double-resonance experiments (*Table 2*) allow to assign these resonances, while revealing further relationships, thus suggesting the partial structure F. This is specifically based, as indicated within circles, on an AMNX system (A at 1.17 (m), MN at 2.38 (br. d) and 1.94 (br. d), and X at 5.26 (br. s)), an A'B'M'X' system¹) (A'B' at 1.98 (br. d) and 1.76 (ddd), M' at 2.95 (br. d), X' at 5.18 (br. d), and a ddd at 4.58 ppm for a proton coupled with M', A, and, through three bonds, with a further proton, as indicated by the double arrows.

¹) By the AMNX and A'B'M'X' systems, we describe here what can be deduced from a simplified analysis of the spectra, as it is feasible at this point of the investigation. Actually, larger portions of the molecule are involved in a more complex spin system; this only becomes evident after these additional experiments are carried out.

Though the 1D ¹H-NMR spectra also reveal an AX system at 6.28 and 7.12 ppm for a C=C bond bearing 2 cis H-atoms, any further advancement in the structure elucidation requires 2D-NMR techniques. Thus, ¹³C, ¹H correlation experiments [8], adapted to one-bond coupling, allow to assign all H-bearing C-atoms (*Table 1*). Moreover, adaptation of this technique to long-range coupling establishes all the correlations reported in the third row of *Table 1* from which the following conclusions can be made. The C-atoms with signals at 134.33 (s) and 39.22 (d), being directly correlated, can be joined together to close a six-membered carbocycle as shown in structure F²). That the six-membered ring must be fused to a ten-membered carbocycle bearing both a Me and a COOMe substituent is suggested by the ¹³C, ¹H correlations indicated by the double arrows in the extended partial structure F'. In terms of the data in *Table 1*, such arrows mean that C(10) is correlated with H–C(11), and Me–C(10), and H–C(9), whereas C(7) is correlated with H–C(8) and H–C(5) and, finally, C–C(6) is correlated with H–C(5).

The above concepts can be further elaborated to assign the s's at 89.64 and 112.28 ppm which are typical of quaternary C-atoms deshielded by 1 or 2 ethercal O-atoms, respectively [2b]. They must be involved in a bridged hemiacetal system as shown in partial structure \mathbf{F}' . This also accounts for the AX system described above in the ¹H-NMR, thus rationalizing the 2 d at 6.28 and 7.12 ppm which have a typical J value (5.6 Hz) for a *cis* C=C bond in a five-membered cycle (*Table 2*).

The remaining ester group accounts for both the deshielded secondary C-atom at 81.77 ppm (*Table 1*) and the proton on it (5.18 ppm (br. d); *Table 2*). Correlation of the latter with both the Me-bearing C-atom in α -position at the five-membered heterocycle) and the second unsaturated-ester carbonyl group (*Table 1*) locates the corresponding unsaturated ester moiety as shown in structure **F**'.


The remaining C-atoms bear no correlation with any one proton of fragment \mathbf{F}' and must, therefore, belong to the unsaturated-ester side-chain³). In fact, from the data in *Tables 1* and 2 it is seen that corresponding ester carbonyl group must be conjugated to an (*E*)-olefinic group (according to the high *J* values), and that this side chain must bear an aromatic group (from the H-C(3'), C(5'') and C(4''), H-C(2') correlations). This accommodates the 2 N-atoms one of which must bear a Me group. This is also in accordance with the loss of a fragment of m/z 152 (unsaturated-acid moiety) from the molecular ion. However, though it is now clear that the ester fragment contains a five-membered aromatic ring with 2 heterocyclic N-atoms, it remains to clarify, whether it is an imidazole or a pyrazole ring.

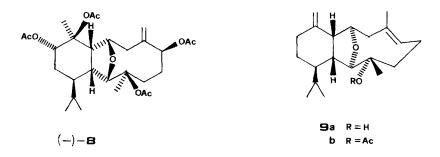
Base hydrolysis of (-)-1 followed by acidification at pH 5 and methylation with CH_2N_2 leads to the methyl ester 3 of the acid moiety (*Scheme 2*) whereas neither the intact terpenoidic moiety nor any fragment from it can be recovered from the reaction mixture.

However, transesterification of (-)-1 with MeONa/MeOH leads to the esterified terpenoidic moiety (+)-4 (*Scheme 1*) besides methyl urocanate 3 (*Scheme 2*). The struc-

²) The 1D ¹H-NMR data in *Table 2*, revealing small coupling constants of H-C(12a) with both Me-C(1) and H-C(2), support this conclusion. However, such small coupling constants could only be reliably noticed with the 2D experience at hand.

³) Suspicions about this structural feature first arose from the results of COSY experiments [9] which showed that H-C(2'') is correlated with both H-C(3') and Me-N(1''), while H-C(5'') is correlated with both H-C(2') and Me-N(1'').

ture of **3** is secured by the synthesis, from commercial (*E*)-urocanic acid (**5**), of both methyl-substituted urocanates **6a** and **6b** which can be separated by HPLC (*Scheme 2*). The structural assignment of the two esters as regards the position of the Me group is based on NOE data, as reported in the *Exper. Part*.


The configuration at the C(5)=C(6) bond of (-)-1 can be indirectly derived from the ¹H-NMR coupling patterns. However, it is also directly proved by the reduction of (-)-1 with LiAlH₄ giving 7, after esterification with benzoic anhydride/pyridine⁴). The structure of 7 rests on NOE studies the results of which are represented by dotted double arrows (*Scheme 1*). Thus, there is a sizable NOE effect at PhCOOH₂C--C(6) on irradiation at the double-bond proton in *cis*-position. Concomitantly, there is also a NOE effect on H_{α} -C(3) which supports the configuration at the ring junction and the pseudoaxial positive of the i-Pr group. This is confirmed by NOE experiments with (-)-1 which show a positive effect between Me₂CH and H--C(12a) (*Exper. Part*). With (-)-1, there are also differential, positive NOE effects on Me-C(1) (on irradiation at either H--C(2) or H_{cxo} -C(12)) and on Me--C(10) (on irradiation at either H--C(9)) which further support the structural conclusions from the ¹³C,¹H experiments.

Structure (-)-1 must also represent the absolute configuration. In fact, terpenoid (+)-4, though labile, could be subjected, immediately as produced, to esterification according to *Horeau*'s methods, giving α -phenylbutyric acid with negative optical rotation.

A minor metabolite extracted form S. roseum, sarcodictyin B ((-)-2), is the 6-ethoxycarbonyl analogue of sarcodictyin A ((-)-1). Its structure is supported by both spectral data (*Exper. Part*) and the fact that, on treatment with MeONa/MeOH, (-)-2 gives the same products as in the case of (-)-1. Therefore, structure (-)-2 represents also the absolute configuration.

Strictly speaking, sarcodictyin A ((-)-1) and B ((-)-2) have the same carbon skeleton as eunicellin ((-)-8), isolated from the gorgonian *Eunicella stricta* [10], as cladiellin (9a) and acetoxycladiellin (9b), isolated from the alcyonacean *Cladiella* sp. (no chiroptical data reported [11]), and as products isolated from the gorgonian *Muricella* sp. [11b] and from an unknown alcyonacean collected at Majuro Atoll [11c]. Moreover, 14-membered

⁴) As reported in the *Exper. Part*, 7 is obtained in extremely poor yield. The main product (or products) contains an α-substituted furan ring, though its detailed nature is not yet clear. Work is in progress to clarify this and other interesting transformations of the sarcodictyins.

cembranoid intermediates may well be biogenetic precursors of all these compounds [12]. However, the different position and the different nature (hemiacetal *vs.* ether) of the O-bridge in the sarcodictyins confers them distinct chemical properties to warrant establishing a distinct series.

It is known that many bacteria possess L-histidine ammonia lyase (histidase) which brings about the transformation of histidine into urocanic acid [13]. Such a process occurs, for example, with preserved fish, and urocanic acid has been proposed as a spoilage index [13]. It is also known that urocanic acid is an inhibitor of histidine decarboxylase [14] and that it has specific toxicity towards certain neoplastic cells [15]. Moreover, being subjected to a (E/Z) photoisomerization [16], urocanic acid may find use to protect the human epidermis from solar radiations [17].

In sarcodictyin A and B, urocanic acid blocks the OH-C(11) function, thus stabilizing an otherwise very labile diterpenoidic alcohol while making the compounds soluble in body fluids. Although the cladiellins are known to exert a most potent antiinflammatory activity [18], it is not yet known whether the urocanic-acid moiety serves to further strengthen some bioactivity of the sarcodictyins.

We warmly thank Mr. J. Mabit and Mr. G. Boyer for much aid in collecting the animals. We are also grateful to Dr. S. Weinberg for the animal identification, the Laboratoire Arago for laboratory facilities, and both the M.P.I. (Progetti di Interesse Nazionale) and the C.N.R. (Roma) for financial support.

Experimental Part

1. General. All evaporations were carried out at reduced pressure at r.t. TLC: Merck Kieselgel 60 PF₂₅₄ plates. UV and IR spectra: Perkin-Elmer Lambda-3 (λ_{max} in nm, ε in dm³ mol⁻¹ cm⁻¹)) and Pye-Unicam SP3-100 ($\tilde{\nu}_{max}$ in cm⁻¹) spectrophotometers, resp. Polarimetric data: JASCO-DIP-181 digital polarimeter. ¹H- and ¹³C-NMR spectra: Varian XL300 (300 or 75.43 MHz, resp.); δ (ppm) relative to internal Me₄Si (= 0 ppm) and J in Hz; the notation small indicates J < 0.5 Hz; J's are derived from homonuclear decoupling; multiplicities in the ¹³C-NMR by APT [7] or DEPT [19] techniques; all chemical-shift assignments are supported by ¹³C, ¹H-NMR shift correlation experiments (HETCOR) [8] which were carried out with spectral width 11 891 Hz (2048 points) along the ¹³C domain and 2330 Hz (128 time increments) along the ¹H domain; for one-bond experiments, for each FID, 256 transients were recorded with $\Delta_1 = 0.0036$ and $\Delta_2 = 0.024$ s; for long-range experiments, for each FID, 768 transients were recorded with $\Delta_1 = 0.042$ and $\Delta_2 = 0.024$ s; the COSY experiment was carried out by acquiring 512 FID (16 transients each) with spectral width 2400 Hz; the data matrix thus obtained was zero filled and pseudo-echo processed. Mass spectra: high-resolution and linked scan (B/E) studies [6], VGZAB2F spectrometer; low resolution, home-built quadrupole mass spectrometer based on the *ELFS-4-162-8 Extranuclear* quadrupole [20].

2. Isolations. S. roseum (= Rolandia rosea (PHILIPPI) was collected by scuba diving 100 meters off Cap Bear, East Pyrenean, at depths of 25–35 m in August 1986, on the skeleton of gorgonians. The animal and the underlying dead gorgonian skeleton were accurately freed from the closely living gorgonian, cut in small pieces, and closely packed, together with the gorgonian skeleton, in a 4-1 vessel which was filled with 95% EtOH. After 1 month, the solvent was decanted, and the residual animals were extracted 3 times with abundant, fresh 95% EtOH. The combined extracts were evaporated, H₂O was added and the mixture extracted with AcOEt. The org. phase was evaporated, and the residue was subjected to reverse-phase flash chromatography on a 6×10 cm frit filter filled with *Serva Polyamide-6* (100–300 µm) with a H₂O/CH₃CN gradient. The first fractions were evaporated, and the residue was subjected to HPLC on a 25×1 cm *Merck-LiChrosorb-CN* (7 µm) column with a 5 ml/min flux of hexane/EtOH/ (i-Pr)NH₂ 80:18:2. Sarcodictyin B ((-)-2; 0.052 g) and A ((-)-1; 0.115 g) were thus eluted at t_R 10.3 and 11.2 min, resp.

3. Sarcodictyin A (= (-)-(4 R,4a R,7 R,10 S,11 S,12a R,1 Z,5 E,8 Z)-7,10-Epoxy-3,4,4a,7,10,11,12,12a-octa-hydro-7-hydroxy-6-(methoxycarbonyl)-1,10-dimethyl-4-(1-methylethyl)benzocyclodecen-11-yl (E)-3-(1-Methyl-1H-imidazol-4yl)acrylate⁵); (-)-1). Colourless microcrystalline powder. M.p. 219–222° (from MeOH). [α]²⁰ = -15.2° (589), -16.3° (577), -21.4° (546), -71.3° (435) (c = 1.12, EtOH). UV (ETOH): 290 (20000), 202 (17000). IR (KBr): 3400s (OH), 1710s (C=O), 1700s (C=O), 1640s, 1270s, 1170s, 1050s. Differential NOE effects (C₅D₅N; irradiated proton (δ) \rightarrow % NOE effect on the observed proton(s) (δ)): terpenoidic portion: 0.81 \rightarrow 10% on 1.94 and 11% on 1.43; 0.91 \rightarrow 11% on 4.58 and 7% on 1.43; 1.17 \rightarrow 3% on 1.97 and 6% on 4.58; 1.53 \rightarrow 12% on 6.28 and 7% on 5.18; 1.58 \rightarrow 15% on 5.26 and 5% on 1.98; 2.38 \rightarrow 11% on 6.97, 4.7% on 5.26, and 12% on 1.94; 2.95 \rightarrow 5% on 5.18, 8% on 4.58, and 6% on 1.43; 4.58 \rightarrow 4% on both 1.17 and 2.95, and 8% on 5.18; 5.18 \rightarrow 5% on both 4.58 and 2.95, and 2% on 1.53; 6.97 \rightarrow 7.5% on 2.38, and 2% on 1.17; urocanate portion: 3.40 \rightarrow 19% on 7.68 and 13% on 7.35; 7.35 \rightarrow 13% on 8.05 and 4% on 3.40; 7.68 \rightarrow 3% on 3.40. MS: 496(51, M^+), 344 (51, M^+ -152), 285 (37), 283 (58), 269 (75), 251 (47), 245 (37), 231 (41), 204 (35). HR-MS: 496.2672 \bullet 0.01 (C₂₈H₃₆N₂O₆, calc. 496.2573), 344.2002 \pm 0.01 (C₂₁H₂₈O₄, calc. 344.1987). Linked scans (B/E [6]): working on M^+ , peaks were observed at m/z 326 (-H₂O), 312 (-MeOH), 301 (-C₃H₇).

4. Hydrolysis of (-)-1. A soln. of (-)-1 (0.005 g, 0.01 mmol) in 2 ml of 4% KOH in MeOH was heated at reflux for 40 min. The mixture was buffered with AcOH and evaporated, CH₂N₂ was added in excess, the resulting mixture evaporated, and the residue subjected to prep. TLC with AcOEt/i-PrNH₂ 98:2. Methyl N(1)-methyl-urocanate (= methyl (E)-3-(1-methyl-1H-imidazol-4-yl)acrylate; 3; 0.001 g, 65%) was obtained from the band at R_{f} 0.2.

5. Transesterification of (-)-1. A soln. of (-)-1 (0.015 g, 0.03 mmol) in 2.8 ml of 1M MeONa in MeOH was stirred at r.t. for 3 h. The mixture was subjected to flash chromatography on *Merck Kieselgel 60* with Et₂O to remove MeONa, thus making the eluate neutral. After evaporation, the residue was subjected to prep. TLC with AcOEt/i-PrNH₂ 95:5 to obtain (+)-4 (0.005 g, 48%) and 3 (0.004 g, 89%) at R_f 0.7 and 0.3, resp.

(+)-Methyl (4R,4aR,7R,10S,11S,12aR,1Z,5E,8Z)-7,10-Epoxy-3,4,4a,7,10,11,12,12a-octahydro-7,11-dihydroxy-1,10-dimethyl-4-(1-methylethyl)benzocyclodecene-6-carboxylate ((+)-4): ¹H-NMR (CD₃OD): 6.58 (d, J(5,4a) = 9.5, H-C(5)); 6.41 (d, J(8,9) = 5.6, H-C(8)); 5.99 (d, J(9,8) = 5.6, H-C(9)); 5.31 (br. s, (H-C(2)); 4.36 (ddd, J(4a,5) = 9.5, J(4a,12a) \approx 5, J(4a,4) \approx 3, H-C(4a)); 3.56 (br. d, J(11,12endo) \approx 7, J(11,12exo) small, H-C(11)); 3.32 (s, MeO); 2.44 (br. s, partially superimposed, H-C(12a)); 2.40 (br. d, partially superimposed, H_{α}-C(3)); 2.08 (br. d, J(3 β ,3 α) \approx 18, H_{β}-C(3)); 1.73 (br. d, J(12exo,12endo) \approx 15, J(12exo,12a) = 2, H_{exo}-C(12)); 1.60 (br. s, Me-C(1)); 1.55 (m, Me₂CH); 1.51 (s, Me-C(10)); 1.34 (ddd, J(12endo,12exo) \approx 15, J(12endo,12a) \approx 12, J(12endo,11) \approx 7.0, H_{endo}-C(12)); 1.24 (m, H-C(4)); 0.96 (d, J(Me(pro-S), Me₂CH)) = J(Me(pro-R), Me₂CH) \approx 7.0, Me₂CH).

6. Reduction of (-)-1 and Benzoylation. To 2.0 ml of a THF soln. of 0.020 g (0.04 mmol) of (-)-1 was added LiAlH₄ in a 1.5 fold molar excess. The mixture was stirred at r.t. for 3.5 h, then quenched with H₂O, extracted with AcOEt, and the extract evaporated. To the residue (0.02 g), pyridine and benzoic anhydride were added and stirred at r.t. for 24 h. After addition of H₂O and stirring for 1 h, aq. NaOH soln. was added, the mixture extracted with AcOEt, the org. phase evaporated, and the residue subjected to prep. TLC with Et₂O/petroleum ether 95:5. The band at R_f 0.93 was extracted and resubjected to prep. TLC with Et₂O/petroleum ether 95:4 to give 11-(benzoyl-oxy)-7,10-epoxy-3,4,4a,7,10,11,12,12a-octahydro-7-hydroxy-1,10-dimethyl-4-(1-methylethyl)benzocyclodecene-6-methyl benzoate (7; 0.001 g, 4.5%) from the band at R_f 0.7. ¹H-NMR (C₆D₅): 8.03 (m, 4H), 7.58 (m, 2H), 7.45 (m, 4H, together 2 Ph); 6.28, 6.27 (*AB*, $J_{AB} = 5.5$, H–C(9), H–C(8)); 5.76 (*d*, J(5,4a) = 9.4, H–C(5)); 5.26 (br. s,

⁵) The diesters (-)-1 and (-)-2 are numbered like the corresponding hydroxy-monoester (+)-4.

H–C(2)); 4.98 (br. d, J(11,12endo) = 7.1, H–C(11)); 4.91, 4.85 (*AB*, $J_{AB} = 12.0$, CH₂–C(6)); 4.09 (*m*, H–C(4a)); 2.82 (br. *s*, H–C(12a)); 2.30 (*m*, H_a–C(3)); 2.03 (*m*, H_{exo}–C(12)); 1.72 (br. *d*, H_β–C(3)); 1.53 (*s*, Me–C(10)); 1.50 (br. *s*, Me–C(1)); 1.03 (*q*, J (Me(*pro-S*)), Me₂CH) = 6.5, Me(*pro-S*)); 0.95 (*d*, J (Me(*pro-R*), Me₂CH) = 6.4, Me(*pro-R*)); 1.3–1.6 (remaining protons, partially submerged by the Me signals); on irradiation at 5.76, differential NOE effects at 4.91 and 4.85 (6%) and at 2.30 (5%).

4a,7,10,11,12,12a-octahydro-7-hydroxy-1,10-dimethyl-4-(1-methylethyl)benzocyclodecen-11-yl (E)-3-(1-Methyl-*IH-imidazol-4-yt*)acrylate⁵); (-)-2). $[\alpha]_{D}^{20} = -4.36^{\circ}$ (c = 0.27, EtOH). ¹H-NMR (C₅D₅N; correlations derived from COSY, in brackets, represented by C-numbering or the appropriate group representation): 5.28 (br. s. $[2 \rightarrow 12a; 2 \rightarrow 3\beta; 2 \rightarrow Me - C(1)], H - C(2)); 2.41$ (br. d, $[3\alpha \rightarrow 3\beta; 3\alpha \rightarrow Me - C(1); 3\alpha \rightarrow 4], H_{\alpha} - C(3)); 1.96$ (superimposed with H_{exo} -C(12), $[3\beta \rightarrow 3\alpha; 3\beta \rightarrow Mc$ -C(1); $3\beta \rightarrow 2]$, H_{β} -C(3)); 4.57 (m, J(4a,5) = 9.7, [4a \rightarrow 12a; 4a \rightarrow 4], H-C(4a); 1.18 (*m*, $[4 \rightarrow 3\alpha; 4 \rightarrow 4a; 4 \rightarrow Me_2CH]$, H-C(4); 6.98 (*d*, *J* (5.4a) = 9.7, H-C(5)); 7.13 (*d*, *J*(8.9) = 5.9, 1.13 (*d*, *J*(8.9) = 5.9); 7.13 (*d*(8.9) = 5.9); H-C(8); 6.30 (d, J (9,8) = 5.9 H-C(9)); 5.18 (br. d, J(11,12endo) = 7.0, J (11,12exo) = small, H-C(11)); 1.99 (superimposed to H_{β} -C(3), [12exo \rightarrow 12endo; 12exo \rightarrow 11], H_{exv} -C(12)); 1.77 (ddd, $J_{sem} = 15.0$, J(12endo, 12a = 12.0, J(12endo, 11) = 7.0, $H_{endo} - C(12)$; 2.96 (br. d, $[12a \rightarrow 2; 12a \rightarrow 4a; 12a \rightarrow 12endo; 12a \rightarrow 12$ $12a \rightarrow Me-C(1)$], H-C(12a); $1.44 (m, J(Me_2CH, Me(pro-S)) = 6.6, J(Me_2CH, Me(pro-R) = 6.5, [Me_2CH \rightarrow 4], Me(Pro-R) = 6.5, [Me_2CH \rightarrow 4], J(Me_2CH, Me(Pro-R) = 6.5, [Me_2CH \rightarrow 4], J(Me_2CH \rightarrow 4], J(Me_2CH$ Me_2CH ; 0.92 (d, J (Me(pro-S), Me_2CH) = 6.6, Me(pro-S)); 0.81 (d, J (Me(pro-R)), Me_2CH) = 6.5, Me(pro-R)); 1.58 (br., s, $[C-C(1) \rightarrow 3\beta; C-C(1) \rightarrow 3\alpha; C-C(1) \rightarrow 12a; C-C(1) \rightarrow 2]$, Me-C(1)); 1.55 (s, Me-C(10)); 4.20, 4.12, (br.) (1.13 $(ABX_3, J_{AB} = 12.0, J_{AX} = J_{BX} = 7.0, CH_3CH_2O);$ 7.13 (dd, J(2',3') = 15.5, J(2',5') = 0.3, H-C(2')); 8.05 (br. d, J(3',2') = 15.5, $[3' \rightarrow 2'']$, H - C(3'); 7.70 (br. s, J(2'',5'') = 1.2, $[2'' \rightarrow 2'; 2'' \rightarrow MeN]$, H - C(2''); 7.37 (br. s, J(2'',5'') = 1.2, $[2'' \rightarrow 2'; 2'' \rightarrow MeN]$, H - C(2''); 7.37 (br. s, J(2'',5'') = 1.2, $[2'' \rightarrow 2'; 2'' \rightarrow MeN]$, H - C(2''); 7.37 (br. s, J(2'',5'') = 1.2, $[2'' \rightarrow 2'; 2'' \rightarrow MeN]$, H - C(2''); 7.37 (br. s, J(2'',5'') = 1.2, $[2'' \rightarrow 2'; 2'' \rightarrow MeN]$, H - C(2''); 7.37 (br. s, J(2'',5'') = 1.2, $[2'' \rightarrow 2'; 2'' \rightarrow MeN]$, H - C(2''); 7.37 (br. s, J(2'',5'') = 1.2, $[2'' \rightarrow 2'; 2'' \rightarrow MeN]$, H - C(2''); 7.37 (br. s, J(2'',5'') = 1.2, $[2'' \rightarrow 2'; 2'' \rightarrow MeN]$, H - C(2''); 7.37 (br. s, J(2'',5'') = 1.2, $[2'' \rightarrow 2'; 2'' \rightarrow MeN]$, H - C(2''); 7.37 (br. s, J(2'',5'') = 1.2, $[2'' \rightarrow 2'; 2'' \rightarrow MeN]$, H - C(2''); 7.37 (br. s, J(2'',5'') = 1.2, $[2'' \rightarrow 2'; 2'' \rightarrow MeN]$, H - C(2''); 7.37 (br. s, J(2'',5'') = 1.2, $[2'' \rightarrow 2'; 2'' \rightarrow MeN]$, H - C(2''); 7.37 (br. s, J(2'',5'') = 1.2, $[2'' \rightarrow 2'; 2'' \rightarrow MeN]$, H - C(2''); 7.37 (br. s, J(2'',5'') = 1.2, $[2'' \rightarrow 2'' \rightarrow MeN]$, H - C(2''); 7.37 (br. s, J(2'',5'') = 1.2, $[2'' \rightarrow 2'' \rightarrow MeN]$, $[2'' \rightarrow$ $J(5'',2'') = 1.2 [5'' \rightarrow \text{MeN}], H - C(5''); 3.41 (s, [MeN \rightarrow 2''; MeN \rightarrow 5''], MeN).$ ¹³C-NMR (C₅D₅N; assignments from HETCOR [8]; multiplicities from DEPT [19]): 134.24 (s, C(1)); 121.58 (d, C(2)); 24.44 (t, C(3)); 41.97 (d, C(4)); 34.75 (d, C(4a)); 143.29 (d, C(5)); 167.47 (s, C-C(6)); 135.81 (s, C(6)); 112.19 (s, C(7)); 134.70 (d, C(8)); 132.68 (d, C(9)); 89.44 (s, C(10)); 81.65 (d, C(11)); 32.12 (t, C(12)); 39.11 (d, C(12a)); 28.88 (d, Me₂CH); 20.24 (g, Me(pro-S)); 22.00 (q, Me(pro-R)); 21.95 (q, Me-C(1)); 25.75 (q, Me-C(10)); 167.02 (s, C(1')); 115.26 (d, C(2')); 137.89 (d, C(3')); 140.05 (d, C(2'')); 138.39 (s, C(4'')); 124.07 (d, C(5'')); 32.85 (q, MeN); 13.99 (q, CH₃CH₂O); 60.49 (t, CH₃CH₂O).

8. Transesterification of (-)-2. Starting from 0.020 g (0.04 mmol) of (-)-2 and operating as above for (-)-1, (+)-4 (0.008 g, 54%) and 3 (0.005 g, 83%) were obtained.

9. Esterification of (+)-4 According to Horcau. To (+)-4 (0.010 g, 0.029 mmol) in 1 ml of dry pyridine was added (\pm) - α -phenylbutyric anhydride (0.023 g, 0.072 mmol), and the mixture was stirred for 5 h at r.t. Then, H₂O (0.3 ml) was added, the mixture stirred for 1.5 h, titrated with 0.1M NaOH, and extracted with Et₂O. The aq. residue was acidified and extracted with Et₂O and the org. phase evaporated. The resulting α -phenylbutyric acid in 2 ml of C₆H₆ had $\alpha_D = -0.022^\circ$ (10-cm optical path cell). Esterification yield (from ¹H-NMR [3]) 57%; optical yield 16.1%.

10. Esterification and Methylation of Urocanic Acid (5). Methyl urocanate (obtained from CH_2N_2 treatment of urocanic acid (5; Aldrich; 0.414 g, 3 mmol)) and Mel (2.33 µl, 3.7 mmol) were dissolved in 20 ml of 0.19M EtONa in EtOH and heated at reflux for 2 h. The mixture was then evaporated and extracted with AcOEt. The org. phase was evaporated and the residue subjected to HPLC on Merck LiChrosorb-CN with hexane/EtOH/i-PrNH₂ 80:18:2 to give ethyl urocanate (0.025 g, 6%), ethyl (E)-3-(1-methyl-1H-imidazol-5-yl)acrylate (6b; 0.12 g, 24%), and ethyl (E)-3-(1-methyl-1H-imidazol-4-yl)acrylate (6a; 0.33 g, 66%) at t_R 5.5, 6.2, and 6.9 min, resp.

6b: ¹H-NMR (CDCl₃): 8.07 (br. *s*, H–C(2")); 7.51 (br. *s*, H–C(4")); 7.48 (*d*, J(3',2') = 16.0, H–C(3')); 6.32 (*d*, J(2',3') = 16.0, H–C(2')); 4.25 (*q*, J = 7.0, CH₃CH₂O); 3.81 (*s*, MeN); 1.34 (*t*, J = 7.0, CH₃CH₂O); differential positive NOE effects (irradiated proton (δ) → resulting effect on); 3.81 → H–C(3') (1.4%); 8.07 → MeN (0.8%).

6a: ¹H-NMR (CDCl₃): 7.52 (*d*, *J*(3',2') = 16.0, H–C(3')); 7.48 (br. *s*, H–C(2")); 7.07 (br. *s*, H–C(5")); 6.53 (*d*, *J*(2',3') = 16.0, H–C(2')); 4.22 (*q*, *J* = 7.0, CH₃CH₂O); 3.70 (*s*, MeN); 1.31 (*t*, *J* = 7.0, CH₃CH₂O); differential positive NOE effects (irradiated proton (δ)→resulting effect on): 7.07→H–C(3') (3.6%) and MeN (1.8%); 3.70→H–C(5") (12%) and H–C(2") (4%).

REFERENCES

- D.J. Faulkner, Nat. Prod. Rep. 1984, 1, 251, 551; ibid. 1986, 3, 1; B. Tursh, J.C. Braekman, D. Daloze, M. Kaisin, in 'Marine Natural Products. Chemical and Biological Perspectives', Ed. P.J. Scheuer, Academic Press, New York, 1978, Vol. II, pp. 247–296.
- [2] a) A. Guerriero, B. Demattè, M. D'Ambrosio, F. Pietra, J. Nat. Prod. 1986, 49, 608; b) M. D'Ambrosio, D. Fabbri, A. Guerriero, F. Pietra, Helv. Chim. Acta 1987, 70, 63; c) M. D'Ambrosio, A. Guerriero, F. Pietra, *ibid.* 1987, 70, 612.
- [3] A. Guerriero, M. D'Ambrosio, F. Pietra, Helv. Chim. Acta 1987, 70, 984.
- [4] M. D'Ambrosio, A. Guerriero, D. Fabbri, F. Pietra, Helv. Chim. Acta 1986, 69, 1581.
- [5] K. Iguchi, S. Kaneta, K. Mori, Y. Yamada, A. Honda, Y. Mori, J. Chem. Soc., Chem. Commun. 1986, 981 and ref. cit. therein.
- [6] F. Daolio, P. Traldi, R. Tonani, Ann. Chim. (Rome) 1983, 73, 591.
- [7] C. Le Cocq, J. Y. Lallemand, J. Chem. Soc., Chem. Commun. 1981, 150; S. L. Patt, J. N. Shoolery, J. Magn. Reson. 1982, 46, 535.
- [8] A. Bax, J. Magn. Reson. 1983, 53, 517.
- [9] A. Bax, R. Freeman, J. Magn. Reson. 1981, 42, 164; ibid. 1981, 44, 542.
- [10] O. Kennard, D.G. Watson, L. Riva di Sanseverino, B. Tursch, R. Bosmans, C. Djerassi, *Tetrahedron Lett.* 1968, 2879.
- [11] a) R. Kazlauskas, P.T. Murphy, R.J. Wells, P. Schönholzer, *Tetrahedron Lett.* 1977, 4643; b) Y. Kashman, *ibid.* 1980, 21, 879; c) J. E. Hochlowski, *ibid.* 1980, 21, 4055.
- [12] W. Fenical, in 'Marine Natural Products. Chemical and Biological Perspectives', Ed. P. J. Scheuer, Academic Press, New York, 1979, Vol. II, p. 211.
- [13] J.D. Baranowski, Appl. Environ. Microbiol. 1985, 50, 546.
- [14] Y. Sakamoto, T. Watanabe, H. Hayashi, Y. Taguchi, H. Wada, Agents Actions 1985, 17, 32.
- [15] V. Burobin, O. V. Ponomareva, T. G. Nikolaeva, N. Y. Yurchenko, Vapr. Med. Khim. 1985, 31, 102 (CA: 1985, 102, 160119y).
- [16] F.D. Lewis, D. K. Howard, J.D. Oxman, A. L. Upthagrove, S. L. Quillen, J. Am. Chem. Soc. 1986, 108, 5964.
- [17] H. Morrison, D. Avir, C. Bernasconi, G. Fagan, Photochem. Photobiol. 1980, 32, 711.
- [18] J.T. Baker, R.J. Wells, in 'Natural Products as Medicinal Agents', Eds. J. L. Beal and E. Reinhard, Hippokrates Verlag, Stuttgart, 1981, pp. 281–318.
- [19] D. M. Doddrell, D. T. Pegg, M. R. Bendall, J. Magn. Reson. 1982, 48, 323; D. T. Pegg, D. M. Doddrell, M. R. Bendall, J. Chem. Phys. 1982, 77, 2745.
- [20] A. Slomp, G. Chiasera, C. Mezzena, F. Pietra, Rev. Sci. Instrum. 1986, 57, 2786.